Course Name | Introduction to Open Quantum Systems |
Code | Semester | Theory (hour/week) | Application/Lab (hour/week) | Local Credits | ECTS |
---|---|---|---|---|---|
PHYS 413 | Fall/Spring | 2 | 2 | 3 | 5 |
Prerequisites |
| ||||||||
Course Language | English | ||||||||
Course Type | Elective | ||||||||
Course Level | First Cycle | ||||||||
Mode of Delivery | Online | ||||||||
Teaching Methods and Techniques of the Course | DiscussionProblem SolvingLecture / Presentation | ||||||||
Course Coordinator | - | ||||||||
Course Lecturer(s) | |||||||||
Assistant(s) |
Course Objectives | The main objective of this course is to introduce students to the theory of open quantum systems, whose understanding is fundamental for the development of quantum information processing devices. Both the general formalism of the theory and specific examples will be discussed. |
Learning Outcomes | The students who succeeded in this course;
|
Course Description | In this course, we will cover the subjects of density matrix formalization, Markovian master equations, quantum optical master equation, quantum decoherence, non-Markovian quantum processes, projection operator techniques, non-Markovian dynamics in physical models, Jaynes-Cummings model. |
| Core Courses | |
Major Area Courses | X | |
Supportive Courses | ||
Media and Managment Skills Courses | ||
Transferable Skill Courses |
Week | Subjects | Required Materials |
1 | Open and closed quantum systems | Heinz-Peter Breuer and Francesco Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2007). Chapter 3.1. ISBN: 9780199213900 |
2 | Open and closed quantum systems | Heinz-Peter Breuer and Francesco Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2007). Chapter 3.1. ISBN: 9780199213900 |
3 | Quantum master equations | Heinz-Peter Breuer and Francesco Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2007). Chapter 3.1.3. ISBN: 9780199213900 |
4 | Quantum master equations | Heinz-Peter Breuer and Francesco Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2007). Chapter 3.2. ISBN: 9780199213900 |
5 | Markovian master equations | Heinz-Peter Breuer and Francesco Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2007). Chapter 3.3. ISBN: 9780199213900 |
6 | Quantum optical master equation | Heinz-Peter Breuer and Francesco Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2007). Chapter 3.4. ISBN: 9780199213900 |
7 | Midterm exam 1 | |
8 | Quantum decoherence | Heinz-Peter Breuer and Francesco Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2007). Chapter 4. ISBN: 9780199213900 |
9 | Non-Markovian quantum processes | Heinz-Peter Breuer and Francesco Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2007). Chapter 9.1. ISBN: 9780199213900 |
10 | Projection operator techniques | Heinz-Peter Breuer and Francesco Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2007). Chapter 9.2. ISBN: 9780199213900 |
11 | Non-Markovian dynamics in physical models | Heinz-Peter Breuer and Francesco Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2007). Chapter 10.1. ISBN: 9780199213900 |
12 | Non-Markovian dynamics in physical models, Midterm Exam 2 | Heinz-Peter Breuer and Francesco Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2007). Chapter 10.2. ISBN: 9780199213900 |
13 | Example models for non-Markovian dynamics | Heinz-Peter Breuer and Francesco Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2007). Chapter 10.3. ISBN: 9780199213900 |
14 | Example models for non-Markovian dynamics | Heinz-Peter Breuer and Francesco Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2007). Chapter 10.3. ISBN: 9780199213900 |
15 | Semester review | |
16 | Final exam |
Course Notes/Textbooks | Heinz-Peter Breuer and Francesco Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2007). ISBN: 9780199213900 |
Suggested Readings/Materials |
Semester Activities | Number | Weigthing |
Participation | 1 | 10 |
Laboratory / Application | ||
Field Work | ||
Quizzes / Studio Critiques | ||
Portfolio | ||
Homework / Assignments | 1 | 10 |
Presentation / Jury | ||
Project | ||
Seminar / Workshop | ||
Oral Exam | ||
Midterm | 2 | 40 |
Final Exam | 1 | 40 |
Total |
Weighting of Semester Activities on the Final Grade | 4 | 60 |
Weighting of End-of-Semester Activities on the Final Grade | 1 | 40 |
Total |
Semester Activities | Number | Duration (Hours) | Workload |
---|---|---|---|
Course Hours (Including exam week: 16 x total hours) | 16 | 2 | 32 |
Laboratory / Application Hours (Including exam week: 16 x total hours) | 16 | 2 | |
Study Hours Out of Class | 12 | 3 | 36 |
Field Work | |||
Quizzes / Studio Critiques | |||
Portfolio | |||
Homework / Assignments | 5 | 2 | |
Presentation / Jury | |||
Project | |||
Seminar / Workshop | |||
Oral Exam | |||
Midterms | 2 | 10 | |
Final Exams | 1 | 20 | |
Total | 150 |
# | Program Competencies/Outcomes | * Contribution Level | ||||
1 | 2 | 3 | 4 | 5 | ||
1 | To be able master and use fundamental phenomenological and applied physical laws and applications, | X | ||||
2 | To be able to identify the problems, analyze them and produce solutions based on scientific method, | X | ||||
3 | To be able to collect necessary knowledge, able to model and self-improve in almost any area where physics is applicable and able to criticize and reestablish his/her developed models and solutions, | X | ||||
4 | To be able to communicate his/her theoretical and technical knowledge both in detail to the experts and in a simple and understandable manner to the non-experts comfortably, | |||||
5 | To be familiar with software used in area of physics extensively and able to actively use at least one of the advanced level programs in European Computer Usage License, | |||||
6 | To be able to develop and apply projects in accordance with sensitivities of society and behave according to societies, scientific and ethical values in every stage of the project that he/she is part in, | |||||
7 | To be able to evaluate every all stages effectively bestowed with universal knowledge and consciousness and has the necessary consciousness in the subject of quality governance, | |||||
8 | To be able to master abstract ideas, to be able to connect with concreate events and carry out solutions, devising experiments and collecting data, to be able to analyze and comment the results, | |||||
9 | To be able to refresh his/her gained knowledge and capabilities lifelong, have the consciousness to learn in his/her whole life, | X | ||||
10 | To be able to conduct a study both solo and in a group, to be effective actively in every all stages of independent study, join in decision making stage, able to plan and conduct using time effectively. | |||||
11 | To be able to collect data in the areas of Physics and communicate with colleagues in a foreign language ("European Language Portfolio Global Scale", Level B1). | |||||
12 | To be able to speak a second foreign at a medium level of fluency efficiently | |||||
13 | To be able to relate the knowledge accumulated throughout the human history to their field of expertise. |
*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest