Course Name | Programming Web Services |
Code | Semester | Theory (hour/week) | Application/Lab (hour/week) | Local Credits | ECTS |
---|---|---|---|---|---|
SE 370 | Fall/Spring | 3 | 0 | 3 | 5 |
Prerequisites | None | |||||
Course Language | English | |||||
Course Type | Elective | |||||
Course Level | First Cycle | |||||
Mode of Delivery | - | |||||
Teaching Methods and Techniques of the Course | ||||||
Course Coordinator | ||||||
Course Lecturer(s) | ||||||
Assistant(s) | - |
Course Objectives | An exploration of current and emergent technologies which are used to provide services (machine-to-machine communication) over N-tiered and distributed networks. Also covered are transaction processing, service and security policies, business protocols, and the web services development cycle. |
Learning Outcomes | The students who succeeded in this course;
|
Course Description | An exploration of current and emergent technologies which are used to provide services (machine to machine communications) over N-tiered and distributed networks. Also covered are transaction processing, service and security policies, business protocols, and the web services development cycle. |
Related Sustainable Development Goals |
| Core Courses | |
Major Area Courses | ||
Supportive Courses | ||
Media and Managment Skills Courses | ||
Transferable Skill Courses |
Week | Subjects | Required Materials |
1 | Introduction to web services | Kalin, CH 1 |
2 | Introduction to RESTful web services | Kalin, CH 1 |
3 | RESTful as a JAX-RS resource | Kalin, CH 2 |
4 | RESTful as a Restlet resource | Kalin, CH 2 |
5 | RESTful web services: the client side I | Kalin, CH 3 |
6 | RESTful web services: the client side II | Kalin, CH 3 |
7 | Midterm | - |
8 | SOAP-based web services I | Kalin, CH 4 |
9 | SOAP-based web services II | Kalin, CH 4 |
10 | SOAP handlers and faults I | Kalin, CH 5 |
11 | SOAP handlers and faults II | Kalin, CH 5 |
12 | Web services security I | Kalin, CH 6 |
13 | Web services security II | Kalin, CH 6 |
14 | Web services and JAVA application servers | Kalin, CH 7 |
15 | Course Review | - |
16 | Course Review |
Course Notes/Textbooks | Kalin, M. (2013). Java Web Services: Up and Running, 2/E, O’reilly, ISBN 978-1-4493-6511-0 |
Suggested Readings/Materials | Papazoglou, M. (2012). Web Services & SOA Principles and Technology 2/E, Pearson, ISBN 978 0 273 73216 7 |
Semester Activities | Number | Weighting |
Participation | ||
Laboratory / Application | ||
Field Work | ||
Quizzes / Studio Critiques | ||
Portfolio | ||
Homework / Assignments | ||
Presentation / Jury | ||
Project | 1 | 20 |
Seminar / Workshop | ||
Oral Exam | ||
Midterm | 1 | 40 |
Final Exam | 1 | 40 |
Total |
Weighting of Semester Activities on the Final Grade | 2 | 60 |
Weighting of End-of-Semester Activities on the Final Grade | 1 | 40 |
Total |
Semester Activities | Number | Duration (Hours) | Workload |
---|---|---|---|
Course Hours (Including exam week: 16 x total hours) | 16 | 3 | 48 |
Laboratory / Application Hours (Including exam week: 16 x total hours) | 16 | ||
Study Hours Out of Class | 16 | 3 | 48 |
Field Work | |||
Quizzes / Studio Critiques | |||
Portfolio | |||
Homework / Assignments | |||
Presentation / Jury | |||
Project | 1 | 9 | |
Seminar / Workshop | |||
Oral Exam | |||
Midterms | 1 | 20 | |
Final Exams | 1 | 25 | |
Total | 150 |
# | Program Competencies/Outcomes | * Contribution Level | ||||
1 | 2 | 3 | 4 | 5 | ||
1 | To have adequate knowledge in Mathematics, Science and Industrial Engineering; to be able to use theoretical and applied information in these areas to model and solve Industrial Engineering problems. | |||||
2 | To be able to identify, formulate and solve complex Industrial Engineering problems by using state-of-the-art methods, techniques and equipment; to be able to select and apply proper analysis and modeling methods for this purpose. | |||||
3 | To be able to analyze a complex system, process, device or product, and to design with realistic limitations to meet the requirements using modern design techniques. | |||||
4 | To be able to choose and use the required modern techniques and tools for Industrial Engineering applications; to be able to use information technologies efficiently. | |||||
5 | To be able to design and do simulation and/or experiment, collect and analyze data and interpret the results for investigating Industrial Engineering problems and Industrial Engineering related research areas. | |||||
6 | To be able to work efficiently in Industrial Engineering disciplinary and multidisciplinary teams; to be able to work individually. | X | ||||
7 | To be able to communicate effectively in Turkish, both orally and in writing; to be able to author and comprehend written reports, to be able to prepare design and implementation reports, to present effectively; to be able to give and receive clear and comprehensible instructions | |||||
8 | To have knowledge about contemporary issues and the global and societal effects of Industrial Engineering practices on health, environment, and safety; to be aware of the legal consequences of Industrial Engineering solutions. | |||||
9 | To be aware of professional and ethical responsibility; to have knowledge of the standards used in Industrial Engineering practice. | X | ||||
10 | To have knowledge about business life practices such as project management, risk management, and change management; to be aware of entrepreneurship and innovation; to have knowledge about sustainable development. | |||||
11 | To be able to collect data in the area of Industrial Engineering; to be able to communicate with colleagues in a foreign language. | X | ||||
12 | To be able to speak a second foreign at a medium level of fluency efficiently. | |||||
13 | To recognize the need for lifelong learning; to be able to access information, to be able to stay current with developments in science and technology; to be able to relate the knowledge accumulated throughout the human history to Industrial Engineering. | X |
*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest