Course Name | Statistical Physics |
Code | Semester | Theory (hour/week) | Application/Lab (hour/week) | Local Credits | ECTS |
---|---|---|---|---|---|
PHYS 305 | Fall/Spring | 2 | 2 | 3 | 5 |
Prerequisites | None | |||||
Course Language | English | |||||
Course Type | Elective | |||||
Course Level | First Cycle | |||||
Mode of Delivery | face to face | |||||
Teaching Methods and Techniques of the Course | DiscussionProblem SolvingLecture / Presentation | |||||
Course Coordinator | - | |||||
Course Lecturer(s) | ||||||
Assistant(s) |
Course Objectives | The main objective of this course is to understand various different thermal phenomena that are met in daily life with the help of statistical methods. |
Learning Outcomes | The students who succeeded in this course;
|
Course Description | In this course, after a review of thermodynamics, statistical theories of both classical and quantum systems will be studied for realistic systems. |
Related Sustainable Development Goals | |
| Core Courses | |
Major Area Courses | X | |
Supportive Courses | ||
Media and Managment Skills Courses | ||
Transferable Skill Courses |
Week | Subjects | Required Materials |
1 | İntroduction | Thermal and statistical physics, concepts and applications, Sandeep Sharma, (Springer 2022) chapter 1 |
2 | Thermodynamics laws | Thermal and statistical physics, concepts and applications, Sandeep Sharma, (Springer 2022) chapter 2 |
3 | 2nd law of Thermodynamics | Thermal and statistical physics, concepts and applications, Sandeep Sharma, (Springer 2022) chapter 3 |
4 | Entropy | Thermal and statistical physics, concepts and applications, Sandeep Sharma, (Springer 2022) chapter 4 |
5 | Microscopic description of Macroscopic systems | Statistical Physics, Nicolas Sator, Nicolas Pavloff and Lénaïc Couëdel, (CRC press 2024) chapter 1 |
6 | Microcanocical ensemble | Statistical Physics, Nicolas Sator, Nicolas Pavloff and Lénaïc Couëdel, (CRC press 2024) chapter 2 |
7 | Midterm exam 1 | |
8 | Statistical thermodynamics | Statistical Physics, Nicolas Sator, Nicolas Pavloff and Lénaïc Couëdel, (CRC press 2024) chapter 3 |
9 | Canonical and Grand Canonical Ensemble | Statistical Physics, Nicolas Sator, Nicolas Pavloff and Lénaïc Couëdel, (CRC press 2024) chapter 4 |
10 | Quantum Statistical Mechanics | Statistical Physics, Nicolas Sator, Nicolas Pavloff and Lénaïc Couëdel, (CRC press 2024) chapter 6 |
11 | General review | Thermal and statistical physics, concepts and applications, Sandeep Sharma, (Springer 2022) chapter 10 |
12 | Midterm exam 2 | |
13 | Bosons | Statistical Physics, Nicolas Sator, Nicolas Pavloff and Lénaïc Couëdel, (CRC press 2024) chapter 7 |
14 | Fermions | Statistical Physics, Nicolas Sator, Nicolas Pavloff and Lénaïc Couëdel, (CRC press 2024) chapter 8 |
15 | Semester review | |
16 | Final Exam |
Course Notes/Textbooks | Thermal and statistical physics, concepts and applications, Sandeep Sharma, Springer, ISBN 978-3-031-07684-8 2022. Statistical Physics, Nicolas Sator, Nicolas Pavloff and Lénaïc Couëdel, CRC press, ISBN: 978-1-003-27242-7 (ebk), 2024. |
Suggested Readings/Materials | Linda E. Reichl, A Modern Course in Statistical Physics, 3rd edn. (Wiley-VHC, 2009). ISBN: 9783527407828 Daniel Schroeder, An Introduction to Thermal Physics (Pearson, 1999). ISBN: 978-0201380279 S.M. Ross, Introduction To Probability And Statistics For Engineers And Scientists (Elsevier, 2014). ISBN: 9789351072805 |
Semester Activities | Number | Weighting |
Participation | 1 | 10 |
Laboratory / Application | ||
Field Work | ||
Quizzes / Studio Critiques | ||
Portfolio | ||
Homework / Assignments | ||
Presentation / Jury | ||
Project | ||
Seminar / Workshop | ||
Oral Exam | ||
Midterm | 2 | 50 |
Final Exam | 1 | 40 |
Total |
Weighting of Semester Activities on the Final Grade | 3 | 60 |
Weighting of End-of-Semester Activities on the Final Grade | 1 | 40 |
Total |
Semester Activities | Number | Duration (Hours) | Workload |
---|---|---|---|
Course Hours (Including exam week: 16 x total hours) | 16 | 2 | 32 |
Laboratory / Application Hours (Including exam week: 16 x total hours) | 16 | 2 | |
Study Hours Out of Class | 12 | 3 | 36 |
Field Work | |||
Quizzes / Studio Critiques | |||
Portfolio | |||
Homework / Assignments | |||
Presentation / Jury | |||
Project | |||
Seminar / Workshop | |||
Oral Exam | |||
Midterms | 2 | 15 | |
Final Exams | 1 | 20 | |
Total | 150 |
# | Program Competencies/Outcomes | * Contribution Level | ||||
1 | 2 | 3 | 4 | 5 | ||
1 | To be able master and use fundamental phenomenological and applied physical laws and applications, | X | ||||
2 | To be able to identify the problems, analyze them and produce solutions based on scientific method, | X | ||||
3 | To be able to collect necessary knowledge, able to model and self-improve in almost any area where physics is applicable and able to criticize and reestablish his/her developed models and solutions, | X | ||||
4 | To be able to communicate his/her theoretical and technical knowledge both in detail to the experts and in a simple and understandable manner to the non-experts comfortably, | |||||
5 | To be familiar with software used in area of physics extensively and able to actively use at least one of the advanced level programs in European Computer Usage License, | |||||
6 | To be able to develop and apply projects in accordance with sensitivities of society and behave according to societies, scientific and ethical values in every stage of the project that he/she is part in, | |||||
7 | To be able to evaluate every all stages effectively bestowed with universal knowledge and consciousness and has the necessary consciousness in the subject of quality governance, | |||||
8 | To be able to master abstract ideas, to be able to connect with concreate events and carry out solutions, devising experiments and collecting data, to be able to analyze and comment the results, | |||||
9 | To be able to refresh his/her gained knowledge and capabilities lifelong, have the consciousness to learn in his/her whole life, | |||||
10 | To be able to conduct a study both solo and in a group, to be effective actively in every all stages of independent study, join in decision making stage, able to plan and conduct using time effectively. | |||||
11 | To be able to collect data in the areas of Physics and communicate with colleagues in a foreign language ("European Language Portfolio Global Scale", Level B1). | |||||
12 | To be able to speak a second foreign at a medium level of fluency efficiently | |||||
13 | To be able to relate the knowledge accumulated throughout the human history to their field of expertise. |
*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest