Course Name | General Physics II |
Code | Semester | Theory (hour/week) | Application/Lab (hour/week) | Local Credits | ECTS |
---|---|---|---|---|---|
PHYS 102 | Spring | 2 | 2 | 3 | 6 |
Prerequisites | None | |||||
Course Language | English | |||||
Course Type | Required | |||||
Course Level | First Cycle | |||||
Mode of Delivery | - | |||||
Teaching Methods and Techniques of the Course | DiscussionProblem SolvingApplication: Experiment / Laboratory / WorkshopLecture / Presentation | |||||
Course Coordinator | ||||||
Course Lecturer(s) | ||||||
Assistant(s) |
Course Objectives | The main objective of this course is to teach students the fundamentals of electromagnetics together with its practical applications. |
Learning Outcomes | The students who succeeded in this course;
|
Course Description | In this course, we will cover the topics of electric field and charge, Gauss’s law, electric potential, capacitance and dielectrics, current, resistance and electromotive force, direct-current circuits, magnetic field and magnetic field sources and induction. |
Related Sustainable Development Goals |
| Core Courses | X |
Major Area Courses | ||
Supportive Courses | ||
Media and Managment Skills Courses | ||
Transferable Skill Courses |
Week | Subjects | Required Materials |
1 | Electric Charges and Fields | university physics volume 2, openstax.org, chapter 5 |
2 | Electric Charges and Fields | university physics volume 2, openstax.org, chapter 5 |
3 | Gauss’s law | university physics volume 2, openstax.org, chapter 6 |
4 | Electric potential | university physics volume 2, openstax.org, chapter 7 |
5 | Electric potential | university physics volume 2, openstax.org, chapter 7 |
6 | Capacitance | university physics volume 2, openstax.org, chapter 8 |
7 | Current and Resistance | university physics volume 2, openstax.org, chapter 9 |
8 | Direct-Current Circuits | university physics volume 2, openstax.org, chapter 10 |
9 | Midterm Exam | - |
10 | Magnetic Forces and Fields | university physics volume 2, openstax.org, chapter 11 |
11 | Sources of Magnetic Fields | university physics volume 2, openstax.org, chapter 12 |
12 | Sources of Magnetic Fields | university physics volume 2, openstax.org, chapter 12 |
13 | Electromagnetic Induction | university physics volume 2, openstax.org, chapter 13 |
14 | Electromagnetic Induction | university physics volume 2, openstax.org, chapter 13 |
15 | Semester review | |
16 | Final exam |
Course Notes/Textbooks | Douglas C. Giancoli, Physics for Scientists and Engineers with Modern Physics and Mastering Physics, 4th edn. (Pearson, 2008). ISBN: 9780136139225 |
Suggested Readings/Materials |
Semester Activities | Number | Weighting |
Participation | ||
Laboratory / Application | 1 | 25 |
Field Work | ||
Quizzes / Studio Critiques | ||
Portfolio | ||
Homework / Assignments | ||
Presentation / Jury | ||
Project | ||
Seminar / Workshop | ||
Oral Exam | ||
Midterm | 1 | 30 |
Final Exam | 1 | 45 |
Total |
Weighting of Semester Activities on the Final Grade | 3 | 55 |
Weighting of End-of-Semester Activities on the Final Grade | 1 | 45 |
Total |
Semester Activities | Number | Duration (Hours) | Workload |
---|---|---|---|
Course Hours (Including exam week: 16 x total hours) | 16 | 2 | 32 |
Laboratory / Application Hours (Including exam week: 16 x total hours) | 16 | 2 | |
Study Hours Out of Class | 14 | 4 | 56 |
Field Work | |||
Quizzes / Studio Critiques | |||
Portfolio | |||
Homework / Assignments | |||
Presentation / Jury | |||
Project | |||
Seminar / Workshop | |||
Oral Exam | |||
Midterms | 1 | 28 | |
Final Exams | 1 | 32 | |
Total | 180 |
# | Program Competencies/Outcomes | * Contribution Level | ||||
1 | 2 | 3 | 4 | 5 | ||
1 | To have adequate knowledge in Mathematics, Science and Civil Engineering; to be able to use theoretical and applied information in these areas on complex engineering problems. | X | ||||
2 | To be able to identify, define, formulate, and solve complex Civil Engineering problems; to be able to select and apply proper analysis and modeling methods for this purpose. | |||||
3 | To be able to design a complex system, process, device or product under realistic constraints and conditions, in such a way as to meet the requirements; to be able to apply modern design methods for this purpose. | |||||
4 | To be able to devise, select, and use modern techniques and tools needed for analysis and solution of complex problems in engineering applications. | |||||
5 | To be able to design and conduct experiments, gather data, analyze and interpret results for investigating complex engineering problems or Civil Engineering research topics. | |||||
6 | To be able to work efficiently in Civil Engineering disciplinary and multi-disciplinary teams; to be able to work individually. | |||||
7 | To be able to communicate effectively in Turkish, both orally and in writing; to be able to author and comprehend written reports, to be able to prepare design and implementation reports, to present effectively, to be able to give and receive clear and comprehensible instructions. | |||||
8 | To have knowledge about global and social impact of engineering practices on health, environment, and safety; to have knowledge about contemporary issues as they pertain to engineering; to be aware of the legal ramifications of engineering solutions. | |||||
9 | To be aware of ethical behavior, professional and ethical responsibility; to have knowledge about standards utilized in engineering applications. | |||||
10 | To have knowledge about industrial practices such as project management, risk management, and change management; to have awareness of entrepreneurship and innovation; to have knowledge about sustainable development. | |||||
11 | To be able to collect data in the area of Civil Engineering, and to be able to communicate with colleagues in a foreign language; | |||||
12 | To be able to speak a second foreign language at a medium level of fluency efficiently. | |||||
13 | To recognize the need for lifelong learning; to be able to access information, to be able to stay current with developments in science and technology; to be able to relate the knowledge accumulated throughout the human history to Civil Engineering. |
*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest