Course Name | Linear Algebra for Engineers |
Code | Semester | Theory (hour/week) | Application/Lab (hour/week) | Local Credits | ECTS |
---|---|---|---|---|---|
MATH 250 | Spring | 3 | 0 | 3 | 6 |
Prerequisites |
| |||||||||||
Course Language | English | |||||||||||
Course Type | Required | |||||||||||
Course Level | First Cycle | |||||||||||
Mode of Delivery | - | |||||||||||
Teaching Methods and Techniques of the Course | Problem SolvingQ&ALecture / Presentation | |||||||||||
Course Coordinator | ||||||||||||
Course Lecturer(s) | ||||||||||||
Assistant(s) |
Course Objectives | The main objective of this course is to establish a basic mathematical background for the students who will receive engineering courses based on linear algebra by providing them with the basic knowledge on linear vector spaces, matrix operations as well as on the methods for solving and analyzing linear systems of algebraic equations. |
Learning Outcomes | The students who succeeded in this course;
|
Course Description | The main subjects of the course are the vector and matrix operations, linear independence and dependence of vectors, linear vector spaces and subspaces, dimensions and basis vectors for vector spaces, linear transformations, determinants, eigenvalue and eigenvectors. |
Related Sustainable Development Goals | |
| Core Courses | X |
Major Area Courses | ||
Supportive Courses | ||
Media and Managment Skills Courses | ||
Transferable Skill Courses |
Week | Subjects | Required Materials |
1 | Systems of linear equations, row reduction and echelon forms, vector equations | David C.Lay, Stephan R.Lay and Judi J. McDonald, "Linear Algebra and Its Applications", 5th ed.( Pearson, 2015). Sections 1.1, 1.2, D0avid C.Lay, Stephan R.Lay and Judi J. McDonald, "Linear Algebra and Its Applications", 5th ed.( Pearson, 2015). Sections 1.1, 1.2, 1.3 |
2 | The matrix equation Ax=b, Solution sets of linear systems, applications of linear systems | David C.Lay, Stephan R.Lay and Judi J. McDonald, "Linear Algebra and Its Applications", 5th ed.( Pearson, 2015). Sections 1.4, 1.5, 1.6 |
3 | Linear Independence, introduction to linear transformations | David C.Lay, Stephan R.Lay and Judi J. McDonald, "Linear Algebra and Its Applications", 5th ed.( Pearson, 2015). Sections 1.7, 1.8 |
4 | The matrix of a linear transformations, linear models in business, science and engineering | David C.Lay, Stephan R.Lay and Judi J. McDonald, "Linear Algebra and Its Applications", 5th ed.( Pearson, 2015). Sections 1.9, 1.10 |
5 | Matrix operations, The inverse of a matrix | David C.Lay, Stephan R.Lay and Judi J. McDonald, "Linear Algebra and Its Applications", 5th ed.( Pearson, 2015). Sections 2.1, 2.2 |
6 | Characterization of invertible matrices, Matrix factorizations | David C.Lay, Stephan R.Lay and Judi J. McDonald, "Linear Algebra and Its Applications", 5th ed.( Pearson, 2015). Sections 2.3, 2.5 |
7 | Introduction to determinants, properties of determinants | David C.Lay, Stephan R.Lay and Judi J. McDonald, "Linear Algebra and Its Applications", 5th ed.( Pearson, 2015).Section 3.1, 3.2, 3.3 |
8 | Cramer’s rule, volume, and linear transformations, Vector spaces and subspaces | David C.Lay, Stephan R.Lay and Judi J. McDonald, "Linear Algebra and Its Applications", 5th ed.( Pearson, 2015).Section 3.3, 4.1 |
9 | Midterm Exam | |
10 | Null spaces, column spaces, and linear transformations, Linearly independent sets, bases | David C.Lay, Stephan R.Lay and Judi J. McDonald, "Linear Algebra and Its Applications", 5th ed.( Pearson, 2015). Sections 4.2, 4.3 |
11 | The dimension of a vector space, Rank, Application for Markov chains | David C.Lay, Stephan R.Lay and Judi J. McDonald, "Linear Algebra and Its Applications", 5th ed.( Pearson, 2015). Sections 4.5, 4.6, 4.9 |
12 | Eigenvalues and eigenvectors, The characteristic equation, Diagonalization | David C.Lay, Stephan R.Lay and Judi J. McDonald, "Linear Algebra and Its Applications", 5th ed.( Pearson, 2015). Sections 5.1, 5.2, 5.3 |
13 | Diagonalization, Inner product, length, and orthogonality, orthogonal sets | David C.Lay, Stephan R.Lay and Judi J. McDonald, "Linear Algebra and Its Applications", 5th ed.( Pearson, 2015). Sections 5.3, 6.1, 6.2 |
14 | The Gram-Schmidt process, review | David C.Lay, Stephan R.Lay and Judi J. McDonald, "Linear Algebra and Its Applications", 5th ed.( Pearson, 2015). Section 6.4 |
15 | Semester review | |
16 | Final exam |
Course Notes/Textbooks | David C.Lay, Stephan R.Lay and Judi J. McDonald, "Linear Algebra and Its Applications", 5th ed. (Pearson, 2015). ISBN-13:978-0321982384 |
Suggested Readings/Materials |
Semester Activities | Number | Weighting |
Participation | ||
Laboratory / Application | ||
Field Work | ||
Quizzes / Studio Critiques | 4 | 20 |
Portfolio | ||
Homework / Assignments | ||
Presentation / Jury | ||
Project | ||
Seminar / Workshop | ||
Oral Exam | ||
Midterm | 1 | 30 |
Final Exam | 1 | 50 |
Total |
Weighting of Semester Activities on the Final Grade | 5 | 50 |
Weighting of End-of-Semester Activities on the Final Grade | 1 | 50 |
Total |
Semester Activities | Number | Duration (Hours) | Workload |
---|---|---|---|
Course Hours (Including exam week: 16 x total hours) | 16 | 3 | 48 |
Laboratory / Application Hours (Including exam week: 16 x total hours) | 16 | ||
Study Hours Out of Class | 14 | 3 | 42 |
Field Work | |||
Quizzes / Studio Critiques | 4 | 5 | |
Portfolio | |||
Homework / Assignments | |||
Presentation / Jury | |||
Project | |||
Seminar / Workshop | |||
Oral Exam | |||
Midterms | 1 | 30 | |
Final Exams | 1 | 40 | |
Total | 180 |
# | Program Competencies/Outcomes | * Contribution Level | ||||
1 | 2 | 3 | 4 | 5 | ||
1 | To have adequate knowledge in Mathematics, Science and Industrial Engineering; to be able to use theoretical and applied information in these areas to model and solve Industrial Engineering problems. | X | ||||
2 | To be able to identify, formulate and solve complex Industrial Engineering problems by using state-of-the-art methods, techniques and equipment; to be able to select and apply proper analysis and modeling methods for this purpose. | |||||
3 | To be able to analyze a complex system, process, device or product, and to design with realistic limitations to meet the requirements using modern design techniques. | |||||
4 | To be able to choose and use the required modern techniques and tools for Industrial Engineering applications; to be able to use information technologies efficiently. | X | ||||
5 | To be able to design and do simulation and/or experiment, collect and analyze data and interpret the results for investigating Industrial Engineering problems and Industrial Engineering related research areas. | |||||
6 | To be able to work efficiently in Industrial Engineering disciplinary and multidisciplinary teams; to be able to work individually. | |||||
7 | To be able to communicate effectively in Turkish, both orally and in writing; to be able to author and comprehend written reports, to be able to prepare design and implementation reports, to present effectively; to be able to give and receive clear and comprehensible instructions | |||||
8 | To have knowledge about contemporary issues and the global and societal effects of Industrial Engineering practices on health, environment, and safety; to be aware of the legal consequences of Industrial Engineering solutions. | |||||
9 | To be aware of professional and ethical responsibility; to have knowledge of the standards used in Industrial Engineering practice. | |||||
10 | To have knowledge about business life practices such as project management, risk management, and change management; to be aware of entrepreneurship and innovation; to have knowledge about sustainable development. | |||||
11 | To be able to collect data in the area of Industrial Engineering; to be able to communicate with colleagues in a foreign language. | |||||
12 | To be able to speak a second foreign at a medium level of fluency efficiently. | |||||
13 | To recognize the need for lifelong learning; to be able to access information, to be able to stay current with developments in science and technology; to be able to relate the knowledge accumulated throughout the human history to Industrial Engineering. |
*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest