Course Name | Lean Production |
Code | Semester | Theory (hour/week) | Application/Lab (hour/week) | Local Credits | ECTS |
---|---|---|---|---|---|
IE 329 | Fall/Spring | 3 | 0 | 3 | 5 |
Prerequisites | None | |||||
Course Language | English | |||||
Course Type | Elective | |||||
Course Level | First Cycle | |||||
Mode of Delivery | Online | |||||
Teaching Methods and Techniques of the Course | Lecture / Presentation | |||||
Course Coordinator | ||||||
Course Lecturer(s) | ||||||
Assistant(s) | - |
Course Objectives | Lean Production philosophy started in Toyota factories in 1950s is an essential tool for productivity. The purpose of this course is to teach how to eliminate unproductive factors in an organization that we call waste (muda), support students to think in lean perspective and provide necessary background to lead in lean studies. |
Learning Outcomes | The students who succeeded in this course;
|
Course Description | The course involves lean terminology and detailed lean production techniques, real business cases, in addition lean management as well as industrial ergonomics. |
Related Sustainable Development Goals |
| Core Courses | |
Major Area Courses | X | |
Supportive Courses | ||
Media and Managment Skills Courses | ||
Transferable Skill Courses |
Week | Subjects | Required Materials |
1 | Introduction to Lean Thinking, Lean Culture | Presentations |
2 | Lean Production Techniques | Presentations |
3 | Finding and Eliminating Wastes, Kaizen | Presentations |
4 | 5S, Visual Control | Presentations |
5 | Cellular Production | Presentations |
6 | Analysis and Reduction of Preparation Times | Presentations |
7 | Lean Spread and Working with Standards | Presentations |
8 | Midterm | |
9 | Total Productive Maintenance | Presentations |
10 | Push / Pull and Kanban Systems | Presentations |
11 | Value Stream Mapping | Presentations |
12 | Value Stream Mapping | Presentations |
13 | Lean Management | Presentations |
14 | Industrial Ergonomics | Presentations |
15 | Review of the Semester | Presentations |
16 | Final |
Course Notes/Textbooks | Lean Production for Competitive Advantage A Comprehensive Guide to Lean Methods and Management Practices, John Nicholas, CRC Press, 2018 Yalın Dönüşüm Yolculuğu, Prof.Dr. Bülent Durmuşoğlu, Optimist Yayın Grubu, 2020 |
Suggested Readings/Materials | Lecture notes are updated on the website on weekly basis |
Semester Activities | Number | Weighting |
Participation | 1 | 5 |
Laboratory / Application | ||
Field Work | ||
Quizzes / Studio Critiques | 3 | 30 |
Portfolio | ||
Homework / Assignments | ||
Presentation / Jury | ||
Project | ||
Seminar / Workshop | ||
Oral Exam | ||
Midterm | 1 | 25 |
Final Exam | 1 | 40 |
Total |
Weighting of Semester Activities on the Final Grade | 5 | 60 |
Weighting of End-of-Semester Activities on the Final Grade | 1 | 40 |
Total |
Semester Activities | Number | Duration (Hours) | Workload |
---|---|---|---|
Course Hours (Including exam week: 16 x total hours) | 16 | 3 | 48 |
Laboratory / Application Hours (Including exam week: 16 x total hours) | 16 | ||
Study Hours Out of Class | 0 | ||
Field Work | |||
Quizzes / Studio Critiques | 3 | 4 | |
Portfolio | |||
Homework / Assignments | |||
Presentation / Jury | |||
Project | |||
Seminar / Workshop | |||
Oral Exam | |||
Midterms | 1 | 40 | |
Final Exams | 1 | 50 | |
Total | 150 |
# | Program Competencies/Outcomes | * Contribution Level | ||||
1 | 2 | 3 | 4 | 5 | ||
1 | To have adequate knowledge in Mathematics, Science and Industrial Engineering; to be able to use theoretical and applied information in these areas to model and solve Industrial Engineering problems. | |||||
2 | To be able to identify, formulate and solve complex Industrial Engineering problems by using state-of-the-art methods, techniques and equipment; to be able to select and apply proper analysis and modeling methods for this purpose. | X | ||||
3 | To be able to analyze a complex system, process, device or product, and to design with realistic limitations to meet the requirements using modern design techniques. | |||||
4 | To be able to choose and use the required modern techniques and tools for Industrial Engineering applications; to be able to use information technologies efficiently. | X | ||||
5 | To be able to design and do simulation and/or experiment, collect and analyze data and interpret the results for investigating Industrial Engineering problems and Industrial Engineering related research areas. | |||||
6 | To be able to work efficiently in Industrial Engineering disciplinary and multidisciplinary teams; to be able to work individually. | X | ||||
7 | To be able to communicate effectively in Turkish, both orally and in writing; to be able to author and comprehend written reports, to be able to prepare design and implementation reports, to present effectively; to be able to give and receive clear and comprehensible instructions | X | ||||
8 | To have knowledge about contemporary issues and the global and societal effects of Industrial Engineering practices on health, environment, and safety; to be aware of the legal consequences of Industrial Engineering solutions. | X | ||||
9 | To be aware of professional and ethical responsibility; to have knowledge of the standards used in Industrial Engineering practice. | |||||
10 | To have knowledge about business life practices such as project management, risk management, and change management; to be aware of entrepreneurship and innovation; to have knowledge about sustainable development. | |||||
11 | To be able to collect data in the area of Industrial Engineering; to be able to communicate with colleagues in a foreign language. | |||||
12 | To be able to speak a second foreign at a medium level of fluency efficiently. | |||||
13 | To recognize the need for lifelong learning; to be able to access information, to be able to stay current with developments in science and technology; to be able to relate the knowledge accumulated throughout the human history to Industrial Engineering. | X |
*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest