DERS TANITIM BİLGİLERİ


Dersin Adı
Algoritma Tasarımı
Kodu
Yarıyıl
Teori
(saat/hafta)
Uygulama/Lab
(saat/hafta)
Yerel Kredi
AKTS
CE 401
Güz/Bahar
3
0
3
5
Ön-Koşul(lar)
 CE 221Başarılı olmak (En az DD notu almış olmak)
Dersin Dili
İngilizce
Dersin Türü
Seçmeli
Dersin Düzeyi
Lisans
Dersin Veriliş Şekli -
Dersin Öğretim Yöntem ve Teknikleri Problem çözme
Anlatım / Sunum
Dersin Koordinatörü
Öğretim Eleman(lar)ı
Yardımcı(ları) -
Dersin Amacı Bu dersin amacı algoritmalara, kullanımlarını motive eden gerçek hayattaki problemlere bakarak tanıtmaktır. Öğrenciler bilgisayar uygulamalarında karşılacakları bir dizi tasarım ve analiz tekniklerini öğreneceklerdir. 'Greedy' algoritmalar, 'Divide & Conquer' tipi algoritmalar ve dinamik programlama farklı örnek uygulamalar ile ele alınacak. Bunların yanı sıra yaklaşım algoritmaları, yük dengeleme ve küme kapsama problemleri aracılığı ile işlenecektir.
Öğrenme Çıktıları Bu dersi başarıyla tamamlayabilen öğrenciler;
  • farklı tip algoritmaları ve kullanım amaçlarını sınıflayabilecektir,
  • farklı tip algoritmaların zaman ve uzay karmaşıklıklarını açıklayabilecektir,
  • belirli hesaplama problemlerini çözmek üzere verimli “açgözlü” algoritmalar yaratabilecektir,
  • belirli hesaplama problemlerini çözmek üzere verimli “böl ve yönet” tipi algoritmalar kodlayabilecektir,
  • belirli optimizasyon problemlerini çözmek üzere verimli “dinamik programlama” algoritmaları formüle edebilecektir.
Ders Tanımı Ders temel algoritma analizi, çizge kuramı konsepti, aç gözlü algoritmaları, böl ve yönet algoritmaları, dinamik programlama ve yakınsak algoritmaları kapsar.
Dersin İlişkili Olduğu Sürdürülebilir Kalkınma Amaçları

 



Dersin Kategorisi

Temel Ders
Uzmanlık/Alan Dersleri
Destek Dersleri
X
İletişim ve Yönetim Becerileri Dersleri
Aktarılabilir Beceri Dersleri

 

HAFTALIK KONULAR VE İLGİLİ ÖN HAZIRLIK ÇALIŞMALARI

Hafta Konular Ön Hazırlık
1 Introduction: Some Representative Problems Course Book; Chapter 1.
2 Basics of Algorithms Analysis Course Book; Chapter 2.
3 Graphs Course Book; Chapter 3.
4 Greedy Algorithms: Interval Scheduling Course Book; Chapter 4.
5 Greedy Algorithms: Scheduling to Minimize Lateness Course Book; Chapter 4.
6 Greedy Algorithms : Minimum-Cost Course Book; Chapter 4.
7 Divide and Conquer: Counting Inversions Course Book; Chapter 5.
8 Ara sınav
9 Divide and Conquer: Integer Multiplication Course Book; Chapter 5.
10 Divide and Conquer: Convolutions and The Fast Fourier Transform Course Book; Chapter 5.
11 Dynamic Programming: Weighted Interval Scheduling Course Book; Chapter 6.
12 Dynamic Programming: Subset Sums and Knapsacks Course Book; Chapter 6.
13 Dynamic Programming: Sequence Alignment Course Book; Chapter 6.
14 Approximation Algorithms: Load Balancing Course Book; Chapter 11.
15 Dönemin gözden geçirilmesi
16 Final sınavı
Ders Kitabı Algorithm Design, Jon Kleinberg, Éva Tardos, ISBN-10: 0321295358, ISBN-13: 9780321295354, Addison-Wesley, 2005.
Önerilen Okumalar/Materyaller Algorithms, Cormen, T.H., Liesersan, C.E. and Rivest, R.L. ISBN 0-01-013143-0, McGraw-Hill

 

DEĞERLENDİRME ÖLÇÜTLERİ

Yarıyıl Aktiviteleri Sayı Katkı Payı %
Katılım
Laboratuvar / Uygulama
Arazi Çalışması
Küçük Sınav / Stüdyo Kritiği
Portfolyo
Ödev
1
30
Sunum / Jüri Önünde Sunum
Proje
Seminer/Çalıştay
Sözlü Sınav
Ara Sınav
1
30
Final Sınavı
1
40
Toplam

Yarıyıl İçi Aktivitelerin Başarı Notuna Katkısı
2
60
Yarıyıl Sonu Aktivitelerin Başarı Notuna Katkısı
1
40
Toplam

AKTS / İŞ YÜKÜ TABLOSU

Yarıyıl Aktiviteleri Sayı Süre (Saat) İş Yükü
Teorik Ders Saati
(Sınav haftası dahildir: 16 x teorik ders saati)
16
3
48
Laboratuvar / Uygulama Ders Saati
(Sınav haftası dahildir. 16 x uygulama/lab ders saati)
16
Sınıf Dışı Ders Çalışması
14
4
56
Arazi Çalışması
Küçük Sınav / Stüdyo Kritiği
Portfolyo
Ödev
4
5
Sunum / Jüri Önünde Sunum
Proje
Seminer/Çalıştay
Sözlü Sınav
Ara Sınavlar
1
12
Final Sınavı
1
14
    Toplam
150

 

DERSİN ÖĞRENME ÇIKTILARININ PROGRAM YETERLİLİKLERİ İLE İLİŞKİSİ

#
Program Yeterlilikleri / Çıktıları
* Katkı Düzeyi
1
2
3
4
5
1

Temel matematik, uygulamalı matematik veya istatistik kuramlarına ve uygulamalarına hâkim olur.

2

Matematik veya istatistik alanlarında edindiği ileri düzey bilgi ve becerilerini kullanarak verileri yorumlar, sorunları tanımlar, araştırmalara ve kanıtlara dayalı çözüm önerileri geliştirir.

3

Disiplinler arası yaklaşımla, matematik veya istatistiği gerçek yaşamda uygular ve kendi potansiyelini keşfeder.

4

Matematik veya İstatistik alanında edindiği ileri düzeyde bilgi ve becerilerini eleştirel bir yaklaşımla değerlendirir.

X
5

Kuramsal ve teknik bilgilerini detaylı olarak uzman olan veya olmayan kişilere rahatça aktarır.

X
6

Matematik veya istatistik alanlarında bireysel veya ekip olarak bir çalışmayı sürdürür, bağımsız çalışmanın ilgili tüm aşamalarında etkili olur, karar verme sürecine katılır, zamanı etkili kullanarak gerekli planlamayı yapar.

7

Matematik veya istatistik alanlarında yaygın olarak kullanılan yazılımlara aşina olur ve Avrupa Bilgisayar Kullanma Lisansı İleri Düzeyindeki en az bir programı etkin şekilde kullanır.

8

Dahil olduğu projelerin tüm aşamalarında toplumsal, bilimsel ve etik değerlere uygun hareket eder, toplumsal duyarlılık çerçevesinde proje geliştirip uygular.

9

Evrensel anlamda birikimli ve duyarlı olarak tüm süreçleri etkin şekilde değerlendirir ve kalite yönetimi konusunda yeterli bilince sahip olur.

X
10

Soyut düşünce yapısına hâkim olarak, somut olayları bağlar ve çözüm üretir, veri toplayarak bilimsel yöntemlerle sonuçları inceler ve yorumlar.

11

Bir yabancı dili kullanarak Matematik veya İstatistik ile ilgili bilgi toplar ve meslektaşları ile iletişim kurar.

X
12

İkinci yabancı dili orta düzeyde kullanır.

13

İnsanlık tarihi boyunca oluşan bilgi birikimini uzmanlık alanıyla ilişkilendirir.

*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest