COURSE INTRODUCTION AND APPLICATION INFORMATION


Course Name
Architectural Intelligence: Artificial Intelligence (AI) in Architecture
Code
Semester
Theory
(hour/week)
Application/Lab
(hour/week)
Local Credits
ECTS
ARCH 362
Fall/Spring
2
2
3
4
Prerequisites
None
Course Language
English
Course Type
Elective
Course Level
First Cycle
Mode of Delivery -
Teaching Methods and Techniques of the Course -
Course Coordinator
Course Lecturer(s)
Assistant(s) -
Course Objectives This course will explore Artificial Intelligence concepts that are converging with the fundamentals and the practice of Architecture. In this course the student will develop an understanding of Deep Learning applications in Architectural domains. The course will be based on exploring the Architectural Intelligence that is embedded in the tacit experience of its practitioners and within the built environment. Assignments will be on applying machine learning and deep learning models on available data concerning built spaces. Skills attained in this course are expected to help prospective architecture professionals in creation and evaluation and feedback processes of architectural spaces.
Learning Outcomes The students who succeeded in this course;
  • Will be able to analyze data for drawing insights through machine learning,
  • Will be able to sort architectural knowledge based on acquired data,
  • Will develop an improved skill level in applying machine learning and deep learning models for their architectural practice,
  • Will be able to use at least one basic software needed for AI in Architecture,
  • Will be able to preprocess data to enable machine learning or deep learning processes in AI in Architecture.
Course Description Throughout the semester, the students will be introduced to basic concepts of Artificial Intelligence (AI). Students will be exploring advanced state-of-the-art applications of AI in various scales within the scope of lectures given during the first hour of each class. Weekly assignments will give students the opportunity for hands-on experience with data processing, machine learning and deep learning models. A project will run from mid-semester to the Final.
Related Sustainable Development Goals

 



Course Category

Core Courses
Major Area Courses
X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

 

WEEKLY SUBJECTS AND RELATED PREPARATION STUDIES

Week Subjects Required Materials
1 Syllabus Overview: Introduction, Attendance and Time Keeping Introduction
2 Basics of Artificial Intelligence (AI) Research and daily tasks
3 History of AI, Machine Learning and Deep Learning Research and daily tasks
4 Computation and Creativity in Architecture Research and daily tasks
5 Architecture and Patterns Research and daily tasks
6 Overview of Deep Learning Models Research and daily tasks
7 Data Acquisition, Preprocessing, Processing, Generative AI I Research and daily tasks
8 Generative AI II Research and daily tasks
9 Midterms Week
10 Computer Vision (CV) Basics Research and daily tasks
11 Quiz I_Workshop Building Learning Models
12 Ethics of AI Work on AI projects
13 Quiz II_Workshop
14 Advances in BIM towards AI Work on AI projects
15 AI and Robotics in Construction Work on AI projects
16 Final Project Presentations Work on AI projects and presentations
Course Notes/Textbooks
Suggested Readings/Materials
  • L Başarır, 2024 "Oda’da YaZ Vakti" Etkinlikleri: Mimarlıkta Yapay Zekâ Üzerine Bir Değerlendirme, Ege Mimarlık 4 (124), 38-43
  • L Başarır, S Çiçek, M Koç 2024 Local intelligence: time to learn from AI, Architectural Science Review, 1-16
  • S Alaçam, L Başarır, OZ Güzelci, SC Hatıpoğlu, S Çiçek
  • 2024 Bölünmüş Ekran-Hesaplamalı Evrende Mimarlık [Divided Screen-Architecture in the Computational Universe]
  • Z Arda, L Başarır,2024 Defending Truth and Democracy in the Age of AI: A Framework for Empowering Voters Against Persuasion and Misinformation with AI Literacy. adComunica. Revista Científica de Estrategias, Tendencias e Innovación en L Başarır, S Çiçek, M Koç 2023 Demystifying the Patterns of Local Knowledge, The 41st eCAADe Conference: Digital Design Reconsidered, 791-800
  • L Başarır, 2022 Modelling AI in Architectural Education
  • Gazi University Journal of Science 1 (1), https://doi.org/10.35378/gujs.967981 29    
  • L Başarır, K Erol 2021 Briefing AI: From Architectural Design Brief Texts to Architectural Design Sketches ASCAAD 9    
  • L Basarir 2020 What if AI Apprentices Outperform Their Human Counterparts? Journal of Computational Design 1 (3), 155-164
  • Steenson, M. W. (2017) Architectural Intelligence: How Designers and Architects Created the Digital Landscape, The MIT Press, Cambridge, Massachusettes
  • Hyde, R. (2016) Architecture in the coming age of Artificial Intelligence Retrieved from https://architectureau.com/articles/architecture-in-the-coming-age-of-artificial-intelligence/ 04.04.2018
  • Oxman, R., Oxman. R. (2014) Theories of the Digital in Architecture, Routledge New York, NY
  • Hall, J. Storrs. (2007) Beyond AI: Creating the Conscience of the Machine. Amherst, NY: Prometheus Books, 253.
  • Negroponte, N. (1975) Soft Architecture Machines, The MIT Press. Cambridge, Massachusettes. Available at: http://www.uni-due.de/~bj0063/doc/Negroponte.pdf

 

EVALUATION SYSTEM

Semester Activities Number Weighting
Participation
1
10
Laboratory / Application
Field Work
Quizzes / Studio Critiques
2
30
Portfolio
Homework / Assignments
1
30
Presentation / Jury
Project
1
30
Seminar / Workshop
Oral Exam
Midterm
Final Exam
Total

Weighting of Semester Activities on the Final Grade
4
70
Weighting of End-of-Semester Activities on the Final Grade
1
30
Total

ECTS / WORKLOAD TABLE

Semester Activities Number Duration (Hours) Workload
Course Hours
(Including exam week: 16 x total hours)
16
4
64
Laboratory / Application Hours
(Including exam week: 16 x total hours)
16
Study Hours Out of Class
0
Field Work
Quizzes / Studio Critiques
2
4
Portfolio
Homework / Assignments
8
4
Presentation / Jury
Project
1
6
Seminar / Workshop
Oral Exam
Midterms
Final Exams
    Total
110

 

COURSE LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS RELATIONSHIP

#
Program Competencies/Outcomes
* Contribution Level
1
2
3
4
5
1

To be able to offer a professional level of architectural services.

X
2

To be able to take on responsibility as an individual and as a team member to solve complex problems in the practice of design and construction.

X
3

To be able to understand methods to collaborate and coordinate with other disciplines in providing project delivery services.

X
4

To be able to understand, interpret, and evaluate methods, concepts, and theories in architecture emerging from both research and practice.

X
5

To be able to develop environmentally and socially responsible architectural strategies at multiple scales.

X
6

To be able to develop a critical understanding of historical traditions, global culture and diversity in the production of the built environment.

7

To be able to apply theoretical and technical knowledge in construction materials, products, components, and assemblies based on their performance within building systems.

8

To be able to present architectural ideas and proposals in visual, written, and oral form through using contemporary computer-based information and communication technologies and media.

X
9

To be able to demonstrate a critical evaluation of acquired knowledge and skills to diagnose individual educational needs and direct self-education skills for developing solutions to architectural problems and design execution.

X
10

To be able to take the initiative for continuous knowledge update and education as well as demonstrate a lifelong learning approach in the field of Architecture.

X
11

To be able to collect data in the areas of Architecture and communicate with colleagues in a foreign language ("European Language Portfolio Global Scale", Level B1)

X
12

To be able to speak a second foreign language at a medium level of fluency efficiently.

13

To be able to relate the knowledge accumulated throughout the human history to their field of expertise.

*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest