COURSE INTRODUCTION AND APPLICATION INFORMATION


Course Name
Biomathematics
Code
Semester
Theory
(hour/week)
Application/Lab
(hour/week)
Local Credits
ECTS
MATH 663
Fall/Spring
3
0
3
7.5
Prerequisites
None
Course Language
English
Course Type
Elective
Course Level
Third Cycle
Mode of Delivery -
Teaching Methods and Techniques of the Course Problem Solving
Q&A
Lecture / Presentation
Course Coordinator -
Course Lecturer(s)
Assistant(s)
Course Objectives The aim of this course is to model biological systems using ordinary differential equations, solve the developed biological models with numerical methods, and simulate and interpret the solutions using MATLAB.
Learning Outcomes The students who succeeded in this course;
  • model biological phenomena using ordinary differential equations
  • define and model population and disease models
  • use numerical methods
  • analyze biological systems using numerical methods.
  • write programs in MATLAB programming language
  • interpret the systems they have solved
Course Description The fundamental applications of ordinary differential equations in biology and the mathematical modeling of biological systems using these equations. The numerical solutions of the developed models and the biological interpretation of the analyzed results.
Related Sustainable Development Goals

 



Course Category

Core Courses
X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

 

WEEKLY SUBJECTS AND RELATED PREPARATION STUDIES

Week Subjects Required Materials
1 Linear differential equations: theory and examples, introduction, basic definitions and notation, first-order linear systems "An Introduction to Mathematical Biology" by Linda J.S.Allen, Pearson, 2006. ISBN-13: 9780130352163
2 Application to population growth models, delay logistic equation "An Introduction to Mathematical Biology" by Linda J.S.Allen, Pearson, 2006. ISBN-13: 9780130352163
3 Biological applications of differential equations; harvesting a single population, predator-prey models, competiton models "An Introduction to Mathematical Biology" by Linda J.S.Allen, Pearson, 2006. ISBN-13: 9780130352163
4 Biological applications of differential equations; Disease Models "An Introduction to Mathematical Biology" by Linda J.S.Allen, Pearson, 2006. ISBN-13: 9780130352163
5 Biological applications of differential equations; Disease Models "An Introduction to Mathematical Biology" by Linda J.S.Allen, Pearson, 2006. ISBN-13: 9780130352163
6 Biological applications of differential equations; Disease Models "An Introduction to Mathematical Biology" by Linda J.S.Allen, Pearson, 2006. ISBN-13: 9780130352163
7 Euler method "Numerical solutions of ordinary differential equations", Kendall Atkinson, Weimin Han, David Stewart, Chapter 2
8 Systems of differential equations Numerical solutions of ordinary differential equations", Kendall Atkinson, Weimin Han, David Stewart, Chapter 3
9 The backward Euler method and the trapezoidal method "Numerical solutions of ordinary differential equations", Kendall Atkinson, Weimin Han, David Stewart, Chapter 4
10 The backward Euler method and the trapezoidal method "Numerical solutions of ordinary differential equations", Kendall Atkinson, Weimin Han, David Stewart, Chapter 4
11 Taylor and Runge–Kutta methods "Numerical solutions of ordinary differential equations", Kendall Atkinson, Weimin Han, David Stewart, Chapter 5
12 Applications to biological models
13 Applications to biological models
14 Presentations
15 Presentations
16 Final Exam
Course Notes/Textbooks

"An Introduction to Mathematical Biology" by  Linda J.S.Allen, Pearson, 2006. ISBN-13: 978-0130352163

Suggested Readings/Materials

"An Invitation to Biomathematics" by Raina Stefanova Robeva, James R. Kirkwood, Robin Lee Davies, Leon Farhy, Boris P. Kovatchev, Academic Press, 1st Edition, 2007. ISBN-13: 978-0120887712

"Numerical solutions of ordinary differential equations", Kendall Atkinson, Weimin Han, David Stewart

 

EVALUATION SYSTEM

Semester Activities Number Weighting
Participation
Laboratory / Application
Field Work
Quizzes / Studio Critiques
Portfolio
Homework / Assignments
Presentation / Jury
1
25
Project
1
25
Seminar / Workshop
Oral Exam
Midterm
Final Exam
1
50
Total

Weighting of Semester Activities on the Final Grade
2
50
Weighting of End-of-Semester Activities on the Final Grade
1
50
Total

ECTS / WORKLOAD TABLE

Semester Activities Number Duration (Hours) Workload
Course Hours
(Including exam week: 16 x total hours)
16
3
48
Laboratory / Application Hours
(Including exam week: 16 x total hours)
16
Study Hours Out of Class
14
6
84
Field Work
Quizzes / Studio Critiques
Portfolio
Homework / Assignments
Presentation / Jury
1
25
Project
1
25
Seminar / Workshop
Oral Exam
Midterms
Final Exams
1
43
    Total
225

 

COURSE LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS RELATIONSHIP

#
Program Competencies/Outcomes
* Contribution Level
1
2
3
4
5
1

To develop and deepen his/her knowledge on theories of mathematics and statistics and their applications in level of expertise, and to obtain unique definitions which bring innovations to the area, based on master level competencies,

X
2

To have the ability of original, independent and critical thinking in Mathematics and Statistics and to be able to develop theoretical concepts,

X
3

To have the ability of defining and verifying problems in Mathematics and Statistics,

X
4

With an interdisciplinary approach, to be able to apply theoretical and applied methods of mathematics and statistics in analyzing and solving new problems and to be able to discover his/her own potentials with respect to the application,

X
5

In nearly every fields that mathematics and statistics are used, to be able to execute, conclude and report a research, which requires expertise, independently,

X
6

To be able to evaluate and renew his/her abilities and knowledge acquired in the field of Applied Mathematics and Statistics with critical approach, and to be able to analyze, synthesize and evaluate complex thoughts in a critical way,

X
7

To be able to convey his/her analyses and methods in the field of Applied Mathematics and Statistics to the experts in a scientific way,

X
8

To be able to use national and international academic resources (English) efficiently, to update his/her knowledge, to communicate with his/her native and foreign colleagues easily, to follow the literature periodically, to contribute scientific meetings held in his/her own field and other fields systematically as written, oral and visual.

X
9

To be familiar with computer software commonly used in the fields of Applied Mathematics and Statistics and to be able to use at least two of them efficiently,

X
10

To contribute the transformation process of his/her own society into an information society and the sustainability of this process by introducing scientific, technological, social and cultural advances in the fields of Applied Mathematics and Statistics,

X
11

As having rich cultural background and social sensitivity with a global perspective, to be able to evaluate all processes efficiently, to be able to contribute the solutions of social, scientific, cultural and ethical problems and to support the development of these values,

X
12

As being competent in abstract thinking, to be able to connect abstract events to concrete events and to transfer solutions, to analyze results with scientific methods by designing experiment and collecting data and to interpret them,

X
13

To be able to produce strategies, policies and plans about systems and topics in which mathematics and statistics are used and to be able to interpret and develop results,

X
14

To be able to evaluate, argue and analyze prominent persons, events and phenomena, which play an important role in the development and combination of the fields of Mathematics and Statistics, within the perspective of the development of other fields of science,

X
15

In Applied Mathematics and Statistics, to be able to sustain scientific work as an individual or a group, to be effective in all phases of an independent work, to participate decision-making process and to make and execute necessary planning within an effective time schedule.

X

*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest