11111

COURSE INTRODUCTION AND APPLICATION INFORMATION


ete.cs.ieu.edu.tr

Course Name
Code
Semester
Theory
(hour/week)
Application/Lab
(hour/week)
Local Credits
ECTS
Fall
Prerequisites
None
Course Language
Course Type
Required
Course Level
-
Mode of Delivery -
Teaching Methods and Techniques of the Course
Course Coordinator
Course Lecturer(s)
Assistant(s) -
Course Objectives
Learning Outcomes The students who succeeded in this course;
  • should be able to solve basic binary math operations using the logic gates
  • should be able to design different units that are elements of typical computer’s CPU
  • should be able to apply knowledge of the logic design course to solve problems of designing of control units of different input/output devices
  • should be able to wiring different logical elements, to analyze and demonstrate timing diagrams of the units modeled
  • should be able to design electrical circuitry using logical elements realized on the base of different technologies.
Course Description

 



Course Category

Core Courses
X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

 

WEEKLY SUBJECTS AND RELATED PREPARATION STUDIES

Week Subjects Required Materials
1 History of Computers Chapter 1
2 Combinational Logic Circuits Chapter 2
3 Combinational Logic Circuits Chapter 2
4 Combinational Logic Design Chapter 3
5 Combinational Logic Design Chapter 3
6 Combinational Logic Design Chapter 3
7 Midterm 1
8 Arithmetic Functions Chapter 4
9 Arithmetic Functions Chapter 4
10 Arithmetic Functions Chapter 4
11 Sequential Circuits Chapter 5
12 Sequential Circuits Chapter 5
13 Sequential Circuits Chapter 5
14 Midterm 2
15 Review of the Semester
16 Review of the Semester
Course Notes/Textbooks Morris Mano, Charles R. Kime, “Logic and Computer Design Fundamentals”, Prentice Hall, 4/E, 2008, ISBN 0132067110.
Suggested Readings/Materials

 

EVALUATION SYSTEM

Semester Activities Number Weigthing
Participation
Laboratory / Application
16
25
Field Work
Quizzes / Studio Critiques
2
20
Portfolio
Homework / Assignments
Presentation / Jury
Project
Seminar / Workshop
Oral Exam
Midterm
1
20
Final Exam
1
35
Total

Weighting of Semester Activities on the Final Grade
4
55
Weighting of End-of-Semester Activities on the Final Grade
1
35
Total

ECTS / WORKLOAD TABLE

Semester Activities Number Duration (Hours) Workload
Course Hours
(Including exam week: 16 x total hours)
16
2
32
Laboratory / Application Hours
(Including exam week: 16 x total hours)
16
2
Study Hours Out of Class
16
3
Field Work
Quizzes / Studio Critiques
2
5
Portfolio
Homework / Assignments
Presentation / Jury
Project
Seminar / Workshop
Oral Exam
Midterms
1
10
Final Exams
1
24
    Total
156

 

COURSE LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS RELATIONSHIP

#
Program Competencies/Outcomes
* Contribution Level
1
2
3
4
5
1 Have sufficient background in mathematics, basic sciences and other related engineering areas and to be able to use this background in the problems of the electrical and electronics  engineering. X
2 Be able to identify, formulate and solve electrical and electronics engineering-related problems by using state-of-the-art methods, techniques and equipment.
3 Be able to analyze an electrical and electronics system, system components or process, and to design with realistic limitations to meet the requirements using modern design techniques. X
4 Be able to choose and use the required techniques and tools for electrical and electronics engineering applications; to use technical symbols and drawings for communication. X
5

Be able to design and do simulation and/or experiment, collect and analyze data and interpret the results.   

X
6

Be able to work independently and participate in multidisiplinary teams.

X
7

Be conscious of project management, office applications, workers’ health, environment and work safety; awareness of professional and ethical responsibilities and the legal consequences of engineering applications.

8

Be able to access information, to do research and use data bases and other information sources.

X
9

Be able to communicate both in oral and written form in English at a minimum level of European Language Portfolio Global Scale Level B1.

10

Have an aptitude, capability and inclination for life-long learning.

X
11

To be able to use a second foreign language at intermediate level.

*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest

 

İzmir Ekonomi Üniversitesi | Sakarya Caddesi No:156, 35330 Balçova - İZMİR Tel: +90 232 279 25 25 | webmaster@ieu.edu.tr | YBS 2010