11111

COURSE INTRODUCTION AND APPLICATION INFORMATION


ete.cs.ieu.edu.tr

Course Name
Code
Semester
Theory
(hour/week)
Application/Lab
(hour/week)
Local Credits
ECTS
Spring
Prerequisites
None
Course Language
Course Type
Required
Course Level
-
Mode of Delivery -
Teaching Methods and Techniques of the Course
Course Coordinator
Course Lecturer(s)
Assistant(s) -
Course Objectives
Learning Outcomes The students who succeeded in this course;
  • Will be able to describe time value of money and economic equivalence
  • Will be able to analyze engineering and managerial decision making problems
  • Will be able to to make informed financial decisions as a project evaluation team member or project manager
  • Will be able to cosnider the effect of inflation on economic analysis
  • Will be able to build critical decision making tools for making appropriate personal, private or public economic and financial decisions
Course Description

 



Course Category

Core Courses
Major Area Courses
Supportive Courses
X
Media and Managment Skills Courses
Transferable Skill Courses

 

WEEKLY SUBJECTS AND RELATED PREPARATION STUDIES

Week Subjects Required Materials
1 Engineering Economic Decisions Fundamentals of Engineering Economics, Chapter 1
2 Time Value of Money Fundamentals of Engineering Economics, Chapter 2
3 Time Value of Money Fundamentals of Engineering Economics, Chapter 2
4 Time Value of Money Fundamentals of Engineering Economics, Chapter 2
5 Understanding Money Management Fundamentals of Engineering Economics, Chapter 3
6 Equivalance Calculations Under Inflation Fundamentals of Engineering Economics, Chapter 4
7 Midterm Exam
8 Present Worth Analysis Fundamentals of Engineering Economics, Chapter 5
9 Annual Equivalence Analysis Fundamentals of Engineering Economics, Chapter 6
10 Rate of Return Analysis Fundamentals of Engineering Economics, Chapter 7
11 Benefit-Cost Analysis Fundamentals of Engineering Economics, Chapter 8
12 Accounting for Depreciation and Income Taxes Fundamentals of Engineering Economics, Chapter 9
13 Project Cash Flow Analysis Fundamentals of Engineering Economics, Chapter 10
14 Review
15 Review
16 Review of the Semester  
Course Notes/Textbooks Fundamentals of Engineering Economics, 3rd ed., Chan S. Park, PrenticeHall..
Suggested Readings/Materials Contemporary Engineering Economics, Chan S. Park, 3rd ed., PrenticeHall.Engineering Economy, Leland Blank, Anthony Tarquin, McGrawHill.Principles of Engineering Economic Analysis, John A. White, Marvin H. Agee, Kenneth E. Case, Wiley. Lecture PowerPoint slides, Excel sheets supplied in lectures for example problems.

 

EVALUATION SYSTEM

Semester Activities Number Weigthing
Participation
Laboratory / Application
Field Work
Quizzes / Studio Critiques
2
25
Portfolio
Homework / Assignments
Presentation / Jury
Project
Seminar / Workshop
Oral Exam
Midterm
1
35
Final Exam
1
40
Total

Weighting of Semester Activities on the Final Grade
60
Weighting of End-of-Semester Activities on the Final Grade
40
Total

ECTS / WORKLOAD TABLE

Semester Activities Number Duration (Hours) Workload
Course Hours
(Including exam week: 16 x total hours)
16
3
48
Laboratory / Application Hours
(Including exam week: 16 x total hours)
16
Study Hours Out of Class
15
3
Field Work
Quizzes / Studio Critiques
2
10
Portfolio
Homework / Assignments
Presentation / Jury
Project
Seminar / Workshop
Oral Exam
Midterms
1
18
Final Exams
1
24
    Total
155

 

COURSE LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS RELATIONSHIP

#
Program Competencies/Outcomes
* Contribution Level
1
2
3
4
5
1 Have sufficient background in mathematics, basic sciences and other related engineering areas and to be able to use this background in the problems of the electrical and electronics  engineering. X
2 Be able to identify, formulate and solve electrical and electronics engineering-related problems by using state-of-the-art methods, techniques and equipment. X
3 Be able to analyze an electrical and electronics system, system components or process, and to design with realistic limitations to meet the requirements using modern design techniques. X
4 Be able to choose and use the required techniques and tools for electrical and electronics engineering applications; to use technical symbols and drawings for communication. X
5

Be able to design and do simulation and/or experiment, collect and analyze data and interpret the results.   

6

Be able to work independently and participate in multidisiplinary teams.

X
7

Be conscious of project management, office applications, workers’ health, environment and work safety; awareness of professional and ethical responsibilities and the legal consequences of engineering applications.

X
8

Be able to access information, to do research and use data bases and other information sources.

X
9

Be able to communicate both in oral and written form in English at a minimum level of European Language Portfolio Global Scale Level B1.

10

Have an aptitude, capability and inclination for life-long learning.

X
11

To be able to use a second foreign language at intermediate level.

X

*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest

 

İzmir Ekonomi Üniversitesi | Sakarya Caddesi No:156, 35330 Balçova - İZMİR Tel: +90 232 279 25 25 | webmaster@ieu.edu.tr | YBS 2010